Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.317
Filtrar
1.
Sci Rep ; 14(1): 8633, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622240

RESUMO

The study aimed to find the best Arbuscular Mycorrhizal Fungi (AMF) strain for cotton growth in Xinjiang's salinity and alkali conditions. Cotton (Xinluzao 45) was treated with Funneliformis mosseae (GM), Rhizophagus irregularis (GI), and Claroideoglomus etunicatum (GE) as treatments, while untreated cotton served as the control (CK). Salinity stress was applied post-3-leaf stage in cotton. The study analyzed cotton's reactions to diverse saline-alkali stresses, focusing on nutrient processes and metabolism. By analyzing the growth and photosynthetic characteristics of plants inoculated with Funneliformis mosseae to evaluate its salt tolerance. Saline-alkali stress reduced chlorophyll and hindered photosynthesis, hampering cotton growth. However, AMF inoculation mitigated these effects, enhancing photosynthetic rates, CO2 concentration, transpiration, energy use efficiency, and overall cotton growth under similar stress levels. GM and GE treatments yielded similar positive effects. AMF inoculation enhanced cotton plant height and biomass. In GM treatment, cotton exhibited notably higher root length than other treatments, showing superior growth under various conditions. In summary, GM-treated cotton had the highest infection rate, followed by GE-treated cotton, with GI-treated cotton having the lowest rate (GM averaging 0.95). Cotton inoculated with Funneliformis mosseae, Rhizophagus irregularis, and Claroideoglomus etunicatum juvenile showed enhanced chlorophyll and photosynthetic levels, reducing salinity effects. Funneliformis mosseae had the most significant positive impact.


Assuntos
Fungos , Micorrizas , Micorrizas/metabolismo , Plântula , Gossypium/metabolismo , Álcalis , Fotossíntese , Clorofila/metabolismo , Solução Salina
2.
BMC Plant Biol ; 24(1): 313, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654158

RESUMO

The enzyme glutamine synthetase (GLN) is mainly responsible for the assimilation and reassimilation of nitrogen (N) in higher plants. Although the GLN gene has been identified in various plants, there is little information about the GLN family in cotton (Gossypium spp.). To elucidate the roles of GLN genes in cotton, we systematically investigated and characterized the GLN gene family across four cotton species (G. raimondii, G. arboreum, G. hirsutum, and G. barbadense). Our analysis encompassed analysis of members, gene structure, cis-element, intragenomic duplication, and exploration of collinear relationships. Gene duplication analysis indicated that segmental duplication was the primary driving force for the expansion of the GhGLN gene family. Transcriptomic and quantitative real-time reverse-transcription PCR (qRT-PCR) analyses indicated that the GhGLN1.1a gene is responsive to N induction treatment and several abiotic stresses. The results of virus-induced gene silencing revealed that the accumulation and N use efficiency (NUE) of cotton were affected by the inactivation of GhGLN1.1a. This study comprehensively analyzed the GhGLN genes in Gossypium spp., and provides a new perspective on the functional roles of GhGLN1.1a in regulating NUE in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Glutamato-Amônia Ligase , Gossypium , Família Multigênica , Nitrogênio , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Nitrogênio/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genes de Plantas , Duplicação Gênica
3.
Mol Biol Rep ; 51(1): 479, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578511

RESUMO

BACKGROUND: GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) genes encode a typical helix-loop-helix (bHLH) transcription factors that primarily regulate trichome branching and root hair development, DNA endoreduplication, trichoblast size, and stomatal formation. The functions of GL3 genes in cotton crop have been poorly characterized. In this study, we performed comprehensive genome-wide scans for GL3 and EGL3 homologs to enhance our comprehension of their potential roles in trichome and fiber development in cotton crop. METHODS AND RESULTS: Our findings paraded that Gossypium hirsutum and G. barbadense have 6 GL3s each, unevenly distributed on 4 chromosomes whereas, G. arboreum, and G. raimondii have 3 GL3s each, unevenly distributed on 2 chromosomes. Gh_A08G2088 and Gb_A09G2187, despite having the same bHLH domain as the other GL3 genes, were excluded due to remarkable short sequences and limited number of motifs, indicating a lack of potential functional activity. The phylogenetic analysis categorized remaining 16 GL3s into three subfamilies (Group I-III) closely related to A. thaliana. The 16 GL3s have complete bHLH domain, encompassing 590-631 amino acids, with molecular weights (MWs) ranging from 65.92 to 71.36 kDa. Within each subfamily GL3s depicted shared similar gene structures and motifs, indicating conserved characteristics within respective groups. Promoter region analysis revealed 27 cis-acting elements, these elements were responsive to salicylic acid, abscisic acid (ABA), methyl jasmonate (MeJA), and gibberellin. The expression of GL3 genes was analyzed across 12 tissues in both G. barbadense and G. hirsutum using the publicly available RNA-seq data. Among GL3s, Gb_D11G0219, Gb_D11G0214, and Gb_D08G2182, were identified as relatively highly expressed across different tissues, consequently selected for hormone treatment and expression validation in G. barbadense. RT-qPCR results demonstrated significant alterations in the expression levels of Gb_D11G0219 and Gb_D11G0214 following MeJA, GA, and ABA treatment. Subcellular localization prediction revealed that most GL3 proteins were predominantly expressed in the nucleus, while a few were localized in the cytoplasm and chloroplasts. CONCLUSIONS: In summary, this study lays the foundation for subsequent functional validation of GL3 genes by identifying hormonal regulation patterns and probable sites of action in cotton trichome formation and fiber development. The results stipulate a rationale to elucidate the roles and regulatory mechanisms of GL3 genes in the intricate process of cotton fibre and trichome development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gossypium/genética , Gossypium/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Tricomas/genética , Tricomas/metabolismo , Filogenia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética
4.
Plant Cell Rep ; 43(4): 102, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499710

RESUMO

KEY MESSAGE: The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of H2O2 burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G. hirsutum) is the most widely cultivated cotton species with high economic value. To gain a better understanding of the role of the MAPK gene family, we conducted a comprehensive analysis of the MAPK gene family in cotton. In this study, a total of 55 GhMPK genes were identified from the whole genome of G. hirsutum. Through an investigation of the expression patterns under diverse stress conditions, we discovered that the majority of GhMPK family members demonstrated robust responses to abiotic stress, pathogen stress and pest stress. Furthermore, the overexpression of GhMPK31 in cotton leaves led to a hypersensitive response (HR)-like cell death phenotype and impaired the defense capability of cotton against herbivorous insects. Transcriptome and metabolomics data analysis showed that overexpression of GhMPK31 enhanced the expression of H2O2-related genes and reduced the accumulation of defensive related metabolites. The direct evidence of GhMPK31 interacting with GhRBOHB (H2O2-generating protein) were found by Y2H, BiFC, and LCI. Therefore, we propose that the increase of H2O2 content caused by overexpression of GhMPK31 resulted in HR-like cell death in cotton leaves while reducing the accumulation of defensive metabolites, ultimately leading to a decrease in the defense ability of cotton against herbivorous insects. This study provides valuable insights into the function of MAPK genes in plant resistance to herbivorous insects.


Assuntos
Gossypium , Peróxido de Hidrogênio , Gossypium/metabolismo , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
5.
Genes (Basel) ; 15(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38540407

RESUMO

Chromatin remodelers are essential for regulating plant growth, development, and responses to environmental stresses. HIT4 (HEAT-INTOLERANT 4) is a novel stress-induced chromatin remodeling factor that has been less studied in abiotic stress and stress resistance, particularly in cotton. In this study, we conducted a comprehensive analysis of the members of the HIT4 gene family in Gossypium hirsutum using bioinformatics methods, including phylogenetic relationships, gene organization, transcription profiles, phylogenetic connections, selection pressure, and stress response. A total of 18 HIT4 genes were identified in four cotton species, with six HIT4 gene members in upland cotton. Based on the evolutionary relationships shown in the phylogenetic tree, the 18 HIT4 protein sequences were classified into four distinct subgroups. Furthermore, we conducted chromosome mapping to determine the genomic locations of these genes and visually represented the structural characteristics of HIT4 in G. hirsutum. In addition, we predicted the regulatory elements in HIT4 in G. hirsutum and conducted an analysis of repetitive sequences and gene collinearity among HIT4 in four cotton species. Moreover, we calculated the Ka/Ks ratio for homologous genes to assess the selection pressure acting on HIT4. Using RNA-seq, we explored the expression patterns of HIT4 genes in G. hirsutum and Gossypium barbadense. Through weighted gene co-expression network analysis (WGCNA), we found that GHHIT4_4 belonged to the MEblue module, which was mainly enriched in pathways such as DNA replication, phagosome, pentose and glucuronate interconversions, steroid biosynthesis, and starch and sucrose metabolism. This module may regulate the mechanism of upland cotton resistance to Verticillium wilt through DNA replication, phagosome, and various metabolic pathways. In addition, we performed heterologous overexpression of GH_D11G0591 (GHHIT4_4) in tobacco, and the results showed a significant reduction in disease index compared to the wild type, with higher expression levels of disease resistance genes in the transgenic tobacco. After conducting a VIGS (virus-induced gene silencing) experiment in cotton, the results indicated that silencing GHHIT4_4 had a significant impact, the resistance to Verticillium wilt weakened, and the internode length of the plants significantly decreased by 30.7% while the number of true leaves increased by 41.5%. qRT-PCR analysis indicated that GHHIT4_4 mainly enhanced cotton resistance to Verticillium wilt by indirectly regulating the PAL, 4CL, and CHI genes. The subcellular localization results revealed that GHHIT4_4 was predominantly distributed in the mitochondria and nucleus. This study offers preliminary evidence for the involvement of the GHHIT4_4 in cotton resistance to Verticillium wilt and lays the foundation for further research on the disease resistance mechanism of this gene in cotton.


Assuntos
Gossypium , Verticillium , Gossypium/metabolismo , Verticillium/genética , Filogenia , Resistência à Doença/genética , Mapeamento Cromossômico
6.
Plant Physiol Biochem ; 208: 108484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452452

RESUMO

Flavonoids have been shown to play an essential role in plant growth and fertility. 4-Coumarate CoA ligase (4CL) is one of the indispensable enzymes involved in the biosynthesis of flavonoids. However, the role of 4CL and flavonoids in impact on cotton fertility is still unknown. In this study, on the basis of identification of an additional Gh4CL gene, Gh4CL20A, by using an updated G. hirsutum genome, we found that Gh4CL20A and its homologous Gh4CL20 were preferentially expressed in petals and stamens. The petals of the loss-of-function Gh4CL20/Gh4CL20A mutant generated by CRISPR/Cas9 gene editing remained white until wilting. Notably, the mutant showed indehiscent anthers, reduced number of pollen grains and pollen viability, leading to male sterility. Histological analysis revealed that abnormal degradation of anther tapetum at the tetrad stage and abnormal pollen grain development at the mature stage caused male sterility of the gene editing mutant. Analysis of the anther transcriptome identified a total of 10574 and 11962 genes up- and down-regulated in the mutant, respectively, compared to the wild-type. GO, KEGG, and WGCNA analyses linked the abnormality of the mutant anthers to the defective flavonoid biosynthetic pathway, leading to decreased activity of 4CL and chalcone isomerase (CHI) and reduced accumulation of flavonoids in the mutant. These results imply a role of Gh4CL20/Gh4CL20A in assuring proper development of cotton anthers by regulating flavonoid metabolism. This study elucidates a molecular mechanism underlying cotton anther development and provides candidate genes for creating cotton male sterile germplasm that has the potential to be used in production of hybrid seeds.


Assuntos
Gossypium , Infertilidade Masculina , Masculino , Humanos , Gossypium/metabolismo , Transcriptoma , Flavonoides/metabolismo , Fertilidade , Regulação da Expressão Gênica de Plantas , Flores/genética , Infertilidade das Plantas/genética
7.
Physiol Plant ; 176(2): e14259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511474

RESUMO

Proteins of the armadillo repeat gene family play important roles in plant pathogen response. Here, 169 armadillo (ARM) genes were identified in upland cotton (Gossypium hirsutum). Phylogenetic analysis grouped these into 11 subfamilies, with conserved protein structures within each subfamily. The results signify that the expansion of the gene family occurred via whole genome duplication and dispersed duplication. Expression profiling and network analysis suggest that GhARM144 may regulate cotton resistance to Verticillium dahliae. GhARM144 was upregulated in roots by V. dahliae infection or salicylic acid treatment. This upregulation indicates a negative regulatory role of GhARM144' in the cotton immune responses, potentially by manipulating salicylic acid biosynthesis. Protein interaction studies found that GhARM144 associates with an osmotin-like protein, GhOSM34, at the plasma membrane. Silencing GhOSM34 reduced the resistance to V. dahliae, suggesting it may play a positive regulatory role. The results demonstrate that GhARM144 modulates cotton immunity through interaction with GhOSM34 and salicylic acid signalling. Further study of these proteins may yield insights into disease resistance mechanisms in cotton and other plants.


Assuntos
Acremonium , Ascomicetos , Verticillium , Filogenia , Verticillium/metabolismo , Gossypium/genética , Gossypium/metabolismo , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Plant Physiol Biochem ; 207: 108409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346368

RESUMO

Autophagy is a highly conserved process that plays a crucial role in adaptation of plants to stress conditions. Melatonin and abscisic acid (ABA) share an antagonistic relationship; however, both are reported to elevate autophagy individually. Here, we report that melatonin alleviates drought stress effects like wilting and stunted growth in 18-day-old plants of drought-sensitive variety of cotton (Gossypium hirsutum L.) and improves the plant growth, chlorophyll content, photosynthetic efficiency, and sugar metabolism and transport. Melatonin priming increased the endogenous melatonin content (5.02-times) but decreased the ABA (2.63-times) by reducing NCED3 expression as compared to unprimed plants under drought. Also, elevated expression of ATG8c and ATG8f correlated with higher lipidated-ATG8 levels and modulation of RAPTOR1 suggesting a higher occurrence of autophagy and regulation of plant growth in primed stressed plants. Additionally, decreased TPS63 and increased TPP22 expression could have lowered the accumulation of trehalose-6-P (T6P) in primed stressed plants thus contributing to autophagy progression. Priming also enhanced the expression of MAPK6 and RAF18, and increased the transcript/protein levels of SnRK2.6 and KIN10, which is pointing towards melatonin's beneficial effect on autophagy under drought. Despite higher ABA content, elevated TPS63 and downregulated TPP22 could have hindered autophagy induction in unprimed stressed plants. Although fluridone treatment reduced the ABA content, the expression of SnRK2.6 and KIN10 remained unaltered in fluridone-treated and untreated primed plants indicating the ABA-independent expression. These results suggest that the melatonin-mediated activation of MAPK contributes to the ABA-independent activation of SnRK2, consequently, SnRK1 and autophagy under drought.


Assuntos
Ácido Abscísico , Melatonina , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Melatonina/farmacologia , Gossypium/genética , Gossypium/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
9.
Gene ; 908: 148282, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38360122

RESUMO

Whitefly is one of the most hazardous insect pests that infests a wide range of host plants and causes huge damage to crop worldwide. In order to engineer plants resilient to whitefly stress, it is important to identify and validate the responsive genes by exploring the molecular dynamics of plants under stress conditions. In this study three genes BG, NPR1, and PAL genes have been studied in cotton for elucidating their role in whitefly stress response. Initially, insilico approach was utilized to investigate the domains and phylogeny of BG, NPR1 and PAL genes and found out that these genes showed remarkable resemblance in four cotton species Gossypium hirsutum, G. barbadense, G. arboreum, and G. raimondii. In BG proteins the main functional domain was X8 belonging to glycohydro superfamily, in NPR1 two main functional domains were BTB_POZ at N terminal and NPR1_like_C at C terminal. In PAL functional domain PLN was found which belongs to Lyase class I superfamily. The promoter analysis of these genes displayed enrichment of hormone, stress and stimuli responsive cis elements. Through Virus Induced Gene Silencing (VIGS), these genes were targeted and kept under whitefly infestation. Overall, the whitefly egg and nymph production were observed 60-70% less on gene down regulated plants as compared to control plants. The qPCR-based expression analysis of certain stress-responsive genes showed that in BG down regulated plants the elevated expression of these whitefly responsive genes was detected, in NPR1 down regulated plants JAZ1 and HSP were found up regulated, ERF1 and WRKY40 didn't show significant differential expression, while MAPK6 was slightly down regulated. In PAL down regulated plants ERF1 and JAZ1 showed elevated expression while others didn't show significant alternation. Differential expression in gene down-regulated plants showed that whitefly responsive genes act in a complex inter signaling pathway and their expression impact each other. This study provides valuable insight into the structural and functional analysis of important whitefly responsive genes BG, NPR1, and PAL. The results will pave a path to future development of whitefly resilient crops.


Assuntos
Gossypium , Hemípteros , Animais , Gossypium/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Inativação Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Família Multigênica
10.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338791

RESUMO

Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks), essential enzymes in the phosphatidylinositol signaling pathway, are crucial for the abiotic stress responses and the overall growth and development of plants. However, the GhPIP5Ks had not been systematically studied, and their function in upland cotton was unknown. This study identified a total of 28 GhPIP5Ks, and determined their chromosomal locations, gene structures, protein motifs and cis-acting elements via bioinformatics analysis. A quantitative real-time PCR (qRT‒PCR) analysis showed that most GhPIP5Ks were upregulated under different stresses. A virus-induced gene silencing (VIGS) assay indicated that the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were significantly decreased, while malondialdehyde (MDA) content were significantly increased in GhPIP5K2- and GhPIP5K22-silenced upland cotton plants under abiotic stress. Furthermore, the expression of the stress marker genes GhHSFB2A, GhHSFB2B, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhBIN2, GhCBL3, GhNHX1, GhPP2C, GhCBF1, GhSnRK2.6 and GhCIPK6 was significantly decreased in the silenced plants after exposure to stress. These results revealed that the silencing of GhPIP5K2 and GhPIP5K22 weakened the tolerance to abiotic stresses. These discoveries provide a foundation for further inquiry into the actions of the GhPIP5K gene family in regulating the response and resistance mechanisms of cotton to abiotic stresses.


Assuntos
Gossypium , Estresse Fisiológico , Gossypium/metabolismo , Estresse Fisiológico/genética , Sequências Reguladoras de Ácido Nucleico , Transdução de Sinais , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
11.
Int J Biol Macromol ; 263(Pt 1): 130072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346615

RESUMO

MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.


Assuntos
Ascomicetos , Solanum melongena , Solanum , Verticillium , Solanum/genética , Verticillium/metabolismo , Ascomicetos/metabolismo , Solanum melongena/genética , Doenças das Plantas/genética , Resistência à Doença/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Int J Biol Macromol ; 262(Pt 2): 129971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354933

RESUMO

Soil drought and salinization, caused by water deficiency, have become the greatest concerns limiting crop production. Up to now, the WRKY transcription factor and histone deacetylase have been shown to be involved in drought and salt responses. However, the molecular mechanism underlying their interaction remains unclear in cotton. Herein, we identified GhWRKY4, a member of WRKY gene family, which is induced by drought and salt stress and is located in the nucleus. The ectopic expression of GhWRKY4 in Arabidopsis enhanced drought and salt tolerance, and suppressing GhWRKY4 in cotton increased susceptibility to drought and salinity. Subsequently, DAP-seq analysis revealed that the W box element in the promoter of stress-induced genes could potentially be the binding target for GhWRKY4 protein. GhWRKY4 binds to the promoters of GhHDA8 and GhNHX7 via W box element, and the expression level of GhHDA8 was increased in GhWRKY4-silenced plants. In addition, GhHDA8-overexpressed Arabidopsis were found to be hypersensitive to drought and salt stress, while silencing of GhHDA8 enhanced drought and salt tolerance in cotton. The stress-related genes, such as GhDREB2A, GhRD22, GhP5CS, and GhNHX7, were induced in GhHDA8-silenced plants. Our findings indicate that the GhWRKY4-GhHDA8 module regulates drought and salt tolerance in cotton. Collectively, the results provide new insights into the coordination of transcription factors and histone deacetylases in regulating drought and salt stress responses in plants.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gossypium/metabolismo , Tolerância ao Sal/genética , Secas , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339155

RESUMO

Annexins (ANNs) are a structurally conserved protein family present in almost all plants. In the present study, 27 GhANNs were identified in cotton and were unevenly distributed across 14 chromosomes. Transcriptome data and RT-qPCR results revealed that multiple GhANNs respond to at least two abiotic stresses. Similarly, the expression levels of GhANN4 and GhANN11 were significantly upregulated under heat, cold, and drought stress. Using virus-induced gene silencing (VIGS), functional characterization of GhANN4 and GhANN11 revealed that, compared with those of the controls, the leaf wilting of GhANN4-silenced plants was more obvious, and the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were lower under NaCl and PEG stress. Moreover, the expression of stress marker genes (GhCBL3, GhDREB2A, GhDREB2C, GhPP2C, GhRD20-2, GhCIPK6, GhNHX1, GhRD20-1, GhSOS1, GhSOS2 and GhSnRK2.6) was significantly downregulated in GhANN4-silenced plants after stress. Under cold stress, the growth of the GHANN11-silenced plants was significantly weaker than that of the control plants, and the activities of POD, SOD, and CAT were also lower. However, compared with those of the control, the elasticity and orthostatic activity of the GhANN11-silenced plants were greater; the POD, SOD, and CAT activities were higher; and the GhDREB2C, GhHSP, and GhSOS2 expression levels were greater under heat stress. These results suggest that different GhANN family members respond differently to different types of abiotic stress.


Assuntos
Genoma de Planta , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
14.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339199

RESUMO

Multiple cis-acting elements are present in promoter sequences that play critical regulatory roles in gene transcription and expression. In this study, we isolated the cotton FDH (Fiddlehead) gene promoter (pGhFDH) using a real-time reverse transcription-PCR (qRT-PCR) expression analysis and performed a cis-acting elements prediction analysis. The plant expression vector pGhFDH::GUS was constructed using the Gateway approach and was used for the genetic transformation of Arabidopsis and upland cotton plants to obtain transgenic lines. Histochemical staining and a ß-glucuronidase (GUS) activity assay showed that the GUS protein was detected in the roots, stems, leaves, inflorescences, and pods of transgenic Arabidopsis thaliana lines. Notably, high GUS activity was observed in different tissues. In the transgenic lines, high GUS activity was detected in different tissues such as leaves, stalks, buds, petals, androecium, endosperm, and fibers, where the pGhFDH-driven GUS expression levels were 3-10-fold higher compared to those under the CaMV 35S promoter at 10-30 days post-anthesis (DPA) during fiber development. The results indicate that pGhFDH can be used as an endogenous constitutive promoter to drive the expression of target genes in various cotton tissues to facilitate functional genomic studies and accelerate cotton molecular breeding.


Assuntos
Arabidopsis , Gossypium , Gossypium/genética , Gossypium/metabolismo , Regiões Promotoras Genéticas , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo
15.
Genome Biol ; 25(1): 59, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409014

RESUMO

BACKGROUND: CRISPR/Cas-derived base editor enables precise editing of target sites and has been widely used for basic research and crop genetic improvement. However, the editing efficiency of base editors at different targets varies greatly. RESULTS: Here, we develop a set of highly efficient base editors in cotton plants. GhABE8e, which is fused to conventional nCas9, exhibits 99.9% editing efficiency, compared to GhABE7.10 with 64.9%, and no off-target editing is detected. We further replace nCas9 with dCpf1, which recognizes TTTV PAM sequences, to broaden the range of the target site. To explore the functional divergence of TERMINAL FLOWER 1 (TFL1), we edit the non-coding and coding regions of GhTFL1 with 26 targets to generate a comprehensive allelic population including 300 independent lines in cotton. This allows hidden pleiotropic roles for GhTFL1 to be revealed and allows us to rapidly achieve directed domestication of cotton and create ideotype germplasm with moderate height, shortened fruiting branches, compact plant, and early-flowering. Further, by exploring the molecular mechanism of the GhTFL1L86P and GhTFL1K53G+S78G mutations, we find that the GhTFL1L86P mutation weakens the binding strength of the GhTFL1 to other proteins but does not lead to a complete loss of GhTFL1 function. CONCLUSIONS: This strategy provides an important technical platform and genetic information for the study and creation of ideal plant architecture.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Gossypium/genética , Gossypium/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Mutação , Plantas/genética
16.
BMC Genomics ; 25(1): 179, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355396

RESUMO

BACKGROUND: Gene expression pattern is associated with biological phenotype and is widely used in exploring gene functions. Its evolution is also crucial in understanding species speciation and divergence. The genus Gossypium is a bona fide model for studying plant evolution and polyploidization. However, the evolution of gene expression during cotton species divergence has yet to be extensively discussed. RESULTS: Based on the seedling leaf transcriptomes, this work analyzed the transcriptomic content and expression patterns across eight cotton species, including six diploids and two natural tetraploids. Our findings indicate that, while the biological function of these cotton transcriptomes remains largely conserved, there has been significant variation in transcriptomic content during species divergence. Furthermore, we conducted a comprehensive analysis of expression distances across cotton species. This analysis lends further support to the use of G. arboreum as a substitute for the A-genome donor of natural cotton polyploids. Moreover, our research highlights the evolution of stress-responsive pathways, including hormone signaling, fatty acid degradation, and flavonoid biosynthesis. These processes appear to have evolved under lower selection pressures, presumably reflecting their critical role in the adaptations of the studied cotton species to diverse environments. CONCLUSIONS: In summary, this study provided insights into the gene expression variation within the genus Gossypium and identified essential genes/pathways whose expression evolution was closely associated with the evolution of cotton species. Furthermore, the method of characterizing genes and pathways under unexpected high or slow selection pressure can also serve as a new strategy for gene function exploration.


Assuntos
Gossypium , Transcriptoma , Gossypium/genética , Gossypium/metabolismo , Genes de Plantas , Perfilação da Expressão Gênica , Poliploidia , Regulação da Expressão Gênica de Plantas , Filogenia , Genoma de Planta
17.
Plant J ; 118(2): 423-436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184843

RESUMO

Upland cotton, the mainly cultivated cotton species in the world, provides over 90% of natural raw materials (fibers) for the textile industry. The development of cotton fibers that are unicellular and highly elongated trichomes on seeds is a delicate and complex process. However, the regulatory mechanism of fiber development is still largely unclear in detail. In this study, we report that a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, GhHOX4, plays an important role in fiber elongation. Overexpression of GhHOX4 in cotton resulted in longer fibers, while GhHOX4-silenced transgenic cotton displayed a "shorter fiber" phenotype compared with wild type. GhHOX4 directly activates two target genes, GhEXLB1D and GhXTH2D, for promoting fiber elongation. On the other hand, phosphatidic acid (PA), which is associated with cell signaling and metabolism, interacts with GhHOX4 to hinder fiber elongation. The basic amino acids KR-R-R in START domain of GhHOX4 protein are essential for its binding to PA that could alter the nuclear localization of GhHOX4 protein, thereby suppressing the transcriptional regulation of GhHOX4 to downstream genes in the transition from fiber elongation to secondary cell wall (SCW) thickening during fiber development. Thus, our data revealed that GhHOX4 positively regulates fiber elongation, while PA may function in the phase transition from fiber elongation to SCW formation by negatively modulating GhHOX4 in cotton.


Assuntos
Gossypium , Fatores de Transcrição , Gossypium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Fosfatídicos/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Plant Cell Environ ; 47(5): 1701-1715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294051

RESUMO

Leaf gas exchange measurements are an important tool for inferring a plant's photosynthetic biochemistry. In most cases, the responses of photosynthetic CO2 assimilation to variable intercellular CO2 concentrations (A/Ci response curves) are used to model the maximum (potential) rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Vcmax) and the rate of photosynthetic electron transport at a given incident photosynthetically active radiation flux density (PAR; JPAR). The standard Farquhar-von Caemmerer-Berry model is often used with default parameters of Rubisco kinetic values and mesophyll conductance to CO2 (gm) derived from tobacco that may be inapplicable across species. To study the significance of using such parameters for other species, here we measured the temperature responses of key in vitro Rubisco catalytic properties and gm in cotton (Gossypium hirsutum cv. Sicot 71) and derived Vcmax and J2000 (JPAR at 2000 µmol m-2 s-1 PAR) from cotton A/Ci curves incrementally measured at 15°C-40°C using cotton and other species-specific sets of input parameters with our new automated fitting R package 'OptiFitACi'. Notably, parameterisation by a set of tobacco parameters produced unrealistic J2000:Vcmax ratio of <1 at 25°C, two- to three-fold higher estimates of Vcmax above 15°C, up to 2.3-fold higher estimates of J2000 and more variable estimates of Vcmax and J2000, for our cotton data compared to model parameterisation with cotton-derived values. We determined that errors arise when using a gm,25 of 2.3 mol m-2 s-1 MPa-1 or less and Rubisco CO2-affinities in 21% O2 (KC 21%O2) at 25°C outside the range of 46-63 Pa to model A/Ci responses in cotton. We show how the A/Ci modelling capabilities of 'OptiFitACi' serves as a robust, user-friendly, and flexible extension of 'plantecophys' by providing simplified temperature-sensitivity and species-specificity parameterisation capabilities to reduce variability when modelling Vcmax and J2000.


Assuntos
Gossypium , Ribulose-Bifosfato Carboxilase , Gossypium/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono , Temperatura , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
19.
New Phytol ; 241(5): 2090-2107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168024

RESUMO

High-affinity K+ (HAK) transporters play essential roles in facilitating root K+ uptake in higher plants. Our previous studies revealed that GhHAK5a, a member of the HAK family, is crucial for K+ uptake in upland cotton. Nevertheless, the precise regulatory mechanism governing the expression of GhHAK5a remains unclear. The yeast one-hybrid screening was performed to identify the transcription factors responsible for regulating GhHAK5a, and ethylene response factor 9 (GhERF9) was identified as a potential candidate. Subsequent dual-luciferase and electrophoretic mobility shift assays confirmed that GhERF9 binds directly to the GhHAK5a promoter, thereby activating its expression. Silencing of GhERF9 decreased the expression of GhHAK5a and exacerbated K+ deficiency symptoms in leaves, also decreased K+ uptake rate and K+ content in roots. Additionally, it was observed that the application of ethephon (an ethylene-releasing reagent) resulted in a significant upregulation of GhERF9 and GhHAK5a, accompanied by an increased rate of K+ uptake. Expectedly, GhEIN3b and GhEIL3c, the two key components involved in ethylene signaling, bind directly to the GhERF9 promoter. These findings provide valuable insights into the molecular mechanisms underlying the expression of GhHAK5a and ethylene-mediated K+ uptake and suggest a potential strategy to genetically enhance cotton K+ uptake by exploiting the EIN3/EILs-ERF9-HAK5 module.


Assuntos
Gossypium , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279348

RESUMO

DVL is one of the small polypeptides which plays an important role in regulating plant growth and development, tissue differentiation, and organ formation in the process of coping with stress conditions. So far, there has been no comprehensive analysis of the expression profile and function of the cotton DVL gene. According to previous studies, a candidate gene related to the development of fuzz was screened, belonging to the DVL family, and was related to the development of trichomes in Arabidopsis thaliana. However, the comprehensive identification and systematic analysis of DVL in cotton have not been conducted. In this study, we employed bioinformatics approaches to conduct a novel analysis of the structural characteristics, phylogenetic tree, gene structure, expression pattern, evolutionary relationship, and selective pressure of the DVL gene family members in four cotton species. A total of 117 DVL genes were identified, including 39 members in G. hirsutum. Based on the phylogenetic analysis, the DVL protein sequences were categorized into five distinct subfamilies. Additionally, we successfully mapped these genes onto chromosomes and visually represented their gene structure information. Furthermore, we predicted the presence of cis-acting elements in DVL genes in G. hirsutum and characterized the repeat types of DVL genes in the four cotton species. Moreover, we computed the Ka/Ks ratio of homologous genes across the four cotton species and elucidated the selective pressure acting on these homologous genes. In addition, we described the expression patterns of the DVL gene family using RNA-seq data, verified the correlation between GhMDVL3 and fuzz development through VIGS technology, and found that some DVL genes may be involved in resistance to biotic and abiotic stress conditions through qRT-PCR technology. Furthermore, a potential interaction network was constructed by WGCNA, and our findings demonstrated the potential of GhM_A05G1032 to interact with numerous genes, thereby playing a crucial role in regulating fuzz development. This research significantly contributed to the comprehension of DVL genes in upland cotton, thereby establishing a solid basis for future investigations into the functional aspects of DVL genes in cotton.


Assuntos
Perfilação da Expressão Gênica , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...